This is a container object that unifies preprocessing, fitting, prediction,
and post-processing for predictive modeling on epidemiological data. It
extends the functionality of a workflows::workflow()
to handle the typical
panel data structures found in this field. This extension is handled
completely internally, and should be invisible to the user. For all intents
and purposes, this operates exactly like a workflows::workflow()
. For some
{epipredict}
specific examples, see the custom epiworkflows vignette.
Arguments
- preprocessor
An optional preprocessor to add to the workflow. One of:
A formula, passed on to
add_formula()
.A recipe, passed on to
add_recipe()
.A
workflow_variables()
object, passed on toadd_variables()
.
- spec
An optional parsnip model specification to add to the workflow. Passed on to
add_model()
.- postprocessor
An optional postprocessor to add to the workflow. Currently only
frosting
is allowed using,add_frosting()
.
Examples
jhu <- covid_case_death_rates
r <- epi_recipe(jhu) %>%
step_epi_lag(death_rate, lag = c(0, 7, 14)) %>%
step_epi_ahead(death_rate, ahead = 7) %>%
step_epi_lag(case_rate, lag = c(0, 7, 14)) %>%
step_epi_naomit()
wf <- epi_workflow(r, parsnip::linear_reg())
wf
#>
#> ══ Epi Workflow ════════════════════════════════════════════════════════════════
#> Preprocessor: Recipe
#> Model: linear_reg()
#> Postprocessor: None
#>
#> ── Preprocessor ────────────────────────────────────────────────────────────────
#>
#> 5 Recipe steps.
#> 1. step_epi_lag()
#> 2. step_epi_ahead()
#> 3. step_epi_lag()
#> 4. step_naomit()
#> 5. step_naomit()
#>
#> ── Model ───────────────────────────────────────────────────────────────────────
#> Linear Regression Model Specification (regression)
#>
#> Computational engine: lm
#>
#>