This is an autoregressive forecasting model for
epiprocess::epi_df data. It does "direct"
forecasting, meaning that it estimates a model for a particular target
horizon of outcome
based on the lags of the predictors
. See the Get started vignette for some worked examples and
Custom epi_workflows vignette for a
recreation using a custom epi_workflow()
.
Usage
arx_forecaster(
epi_data,
outcome,
predictors = outcome,
trainer = linear_reg(),
args_list = arx_args_list()
)
Arguments
- epi_data
An
epi_df
object- outcome
A character (scalar) specifying the outcome (in the
epi_df
).- predictors
A character vector giving column(s) of predictor variables. This defaults to the
outcome
. However, if manually specified, only those variables specifically mentioned will be used. (Theoutcome
will not be added.) By default, equals the outcome. If manually specified, does not add the outcome variable, so make sure to specify it.- trainer
A
{parsnip}
model describing the type of estimation. For now, we enforcemode = "regression"
.- args_list
A list of customization arguments to determine the type of forecasting model. See
arx_args_list()
.
Value
An arx_fcast
, with the fields predictions
and epi_workflow
.
predictions
is an epi_df
of predicted values while epi_workflow()
is
the fit workflow used to make those predictions
Examples
jhu <- covid_case_death_rates %>%
dplyr::filter(time_value >= as.Date("2021-12-01"))
out <- arx_forecaster(
jhu,
"death_rate",
c("case_rate", "death_rate")
)
out <- arx_forecaster(jhu,
"death_rate",
c("case_rate", "death_rate"),
trainer = quantile_reg(),
args_list = arx_args_list(quantile_levels = 1:9 / 10)
)
out
#> ══ A basic forecaster of type ARX Forecaster ═══════════════════════════════════
#>
#> This forecaster was fit on 2025-03-26 21:54:45.
#>
#> Training data was an <epi_df> with:
#> • Geography: state,
#> • Time type: day,
#> • Using data up-to-date as of: 2023-03-10.
#> • With the last data available on 2021-12-31
#>
#> ── Predictions ─────────────────────────────────────────────────────────────────
#>
#> A total of 56 predictions are available for
#> • 56 unique geographic regions,
#> • At forecast date: 2021-12-31,
#> • For target date: 2022-01-07,
#>