Skip to contents

This is a simple forecasting model for epiprocess::epi_df data. It uses the most recent observation as the forecast for any future date, and produces intervals based on the quantiles of the residuals of such a "flatline" forecast over all available training data.

By default, the predictive intervals are computed separately for each combination of key values (geo_value + any additional keys) in the epi_data argument.

This forecaster is very similar to that used by the COVID19ForecastHub

Usage

flatline_forecaster(epi_data, outcome, args_list = flatline_args_list())

Arguments

epi_data

An epiprocess::epi_df

outcome

A scalar character for the column name we wish to predict.

args_list

A list of additional arguments as created by the flatline_args_list() constructor function.

Value

A data frame of point (and optionally interval) forecasts at a single ahead (unique horizon) for each unique combination of key_vars.

Details

Here is (roughly) the code for the flatline_forecaster() applied to the case_rate for epidatasets::covid_case_death_rates.

jhu <- covid_case_death_rates %>%
  filter(time_value > "2021-11-01", geo_value %in% c("ak", "ca", "ny"))
r <- epi_recipe(covid_case_death_rates) %>%
  step_epi_ahead(case_rate, ahead = 7, skip = TRUE) %>%
  recipes::update_role(case_rate, new_role = "predictor") %>%
  recipes::add_role(all_of(key_colnames(jhu)), new_role = "predictor")

f <- frosting() %>%
  layer_predict() %>%
  layer_residual_quantiles() %>%
  layer_add_forecast_date() %>%
  layer_add_target_date() %>%
  layer_threshold(starts_with(".pred"))

eng <- linear_reg() %>% set_engine("flatline")
wf <- epi_workflow(r, eng, f) %>% fit(jhu)
preds <- forecast(wf)

Examples

jhu <- covid_case_death_rates %>%
  dplyr::filter(time_value >= as.Date("2021-12-01"))

out <- flatline_forecaster(jhu, "death_rate")