Skip to contents

forecast.epi_workflow predicts by restricting the training data to the latest available data, and predicting on that. It binds together get_test_data() and predict().

Usage

# S3 method for class 'epi_workflow'
forecast(object, ...)

Arguments

object

An epi workflow.

...

Not used.

Value

A forecast tibble.

Examples

jhu <- covid_case_death_rates %>%
  filter(time_value > "2021-08-01")

r <- epi_recipe(jhu) %>%
  step_epi_lag(death_rate, lag = c(0, 7, 14)) %>%
  step_epi_ahead(death_rate, ahead = 7) %>%
  step_epi_naomit()

epi_workflow(r, parsnip::linear_reg()) %>%
  fit(jhu) %>%
  forecast()
#> An `epi_df` object, 56 x 3 with metadata:
#> * geo_type  = state
#> * time_type = day
#> * as_of     = 2023-03-10
#> 
#> # A tibble: 56 × 3
#>    geo_value time_value .pred
#>    <chr>     <date>     <dbl>
#>  1 ak        2021-12-31 0.550
#>  2 al        2021-12-31 0.290
#>  3 ar        2021-12-31 0.504
#>  4 as        2021-12-31 0.148
#>  5 az        2021-12-31 0.724
#>  6 ca        2021-12-31 0.258
#>  7 co        2021-12-31 0.454
#>  8 ct        2021-12-31 0.333
#>  9 dc        2021-12-31 0.204
#> 10 de        2021-12-31 0.402
#> # ℹ 46 more rows