Skip to contents

For any model that produces forecasts for multiple outcomes, such as multiple aheads, the resulting prediction is a list of forecasts inside a column of the prediction tibble, which is not an ideal format. This layer "lengthens" the result, moving each outcome to a separate row, in the same manner as tidyr::unnest() would. At the moment, the only such engine is smooth_quantile_reg().

Usage

layer_unnest(frosting, ..., id = rand_id("unnest"))

Arguments

frosting

a frosting postprocessor

...

<tidy-select> One or more unquoted expressions separated by commas. Variable names can be used as if they were positions in the data frame, so expressions like x:y can be used to select a range of variables.

id

a random id string

Value

an updated frosting postprocessor

Examples

jhu <- covid_case_death_rates %>%
  filter(time_value > "2021-11-01", geo_value %in% c("ak", "ca", "ny"))

aheads <- 1:7

r <- epi_recipe(jhu) %>%
  step_epi_lag(death_rate, lag = c(0, 7, 14)) %>%
  step_epi_ahead(death_rate, ahead = aheads) %>%
  step_epi_naomit()

wf <- epi_workflow(
  r,
  smooth_quantile_reg(
    quantile_levels = c(.05, .1, .25, .5, .75, .9, .95),
    outcome_locations = aheads
  )
) %>%
  fit(jhu)

f <- frosting() %>%
  layer_predict() %>%
  layer_naomit() %>%
  layer_unnest(.pred)

wf1 <- wf %>% add_frosting(f)

p <- forecast(wf1)
p
#> An `epi_df` object, 21 x 4 with metadata:
#> * geo_type  = state
#> * time_type = day
#> * as_of     = 2023-03-10
#> 
#> # A tibble: 21 × 4
#>    geo_value time_value ahead     distn
#>    <chr>     <date>     <int> <qtls(7)>
#>  1 ak        2021-12-31     1  [0.0399]
#>  2 ak        2021-12-31     2  [0.0571]
#>  3 ak        2021-12-31     3  [0.0656]
#>  4 ak        2021-12-31     4  [0.0821]
#>  5 ak        2021-12-31     5  [0.0881]
#>  6 ak        2021-12-31     6  [0.0865]
#>  7 ak        2021-12-31     7  [0.0549]
#>  8 ca        2021-12-31     1    [0.14]
#>  9 ca        2021-12-31     2   [0.148]
#> 10 ca        2021-12-31     3   [0.155]
#> # ℹ 11 more rows