Skip to contents

Weighted interval score (WIS), a well-known quantile-based approximation of the commonly-used continuous ranked probability score (CRPS). WIS is a proper score, and can be thought of as a distributional generalization of absolute error. For example, see Bracher et al. (2020) for discussion in the context of COVID-19 forecasting.

Usage

weighted_interval_score(
  x,
  actual,
  quantile_levels = NULL,
  na_handling = c("impute", "drop", "propagate", "fail"),
  ...
)

Arguments

x

A vector of class quantile_pred.

actual

double. Actual value(s)

quantile_levels

probabilities. If specified, the score will be computed at this set of levels. Otherwise, those present in x will be used.

na_handling

character. Determines missing values are handled. For "impute", missing values will be calculated if possible using the available quantiles. For "drop", explicitly missing values are ignored in the calculation of the score, but implicitly missing values are imputed if possible. For "propogate", the resulting score will be NA if any missing values exist. Finally, if quantile_levels is specified, "fail" will result in the score being NA when any required quantile levels (implicit or explicit) do not have corresponding values.

...

not used

Value

a vector of nonnegative scores.

Examples

quantile_levels <- c(.2, .4, .6, .8)
predq1 <- 1:4 #
predq2 <- 8:11
dstn <- quantile_pred(rbind(predq1, predq2), quantile_levels)
actual <- c(3.3, 7.1)
weighted_interval_score(dstn, actual)
#> [1] 0.65 1.90
weighted_interval_score(dstn, actual, c(.25, .5, .75))
#> [1] 0.6833333 1.9833333

# Missing value behaviours
dstn <- quantile_pred(matrix(c(1, 2, NA, 4), nrow = 1), 1:4 / 5)
weighted_interval_score(dstn, 2.5)
#> [1] 0.5
weighted_interval_score(dstn, 2.5, 1:9 / 10)
#> [1] 0.455656
weighted_interval_score(dstn, 2.5, 1:9 / 10, na_handling = "drop")
#> [1] 0.462613
weighted_interval_score(dstn, 2.5, na_handling = "propagate")
#> [1] NA
weighted_interval_score(
  quantile_pred(matrix(1:4, nrow = 1), 1:4 / 5),
  actual = 2.5,
  quantile_levels = 1:9 / 10,
  na_handling = "fail"
)
#> [1] NA


# Using some actual forecasts --------
library(dplyr)
training <- covid_case_death_rates %>%
  filter(time_value >= "2021-10-01", time_value <= "2021-12-01")
preds <- flatline_forecaster(
  training, "death_rate",
  flatline_args_list(quantile_levels = c(.01, .025, 1:19 / 20, .975, .99))
)$predictions
actuals <- covid_case_death_rates %>%
  filter(time_value == as.Date("2021-12-01") + 7) %>%
  select(geo_value, time_value, actual = death_rate)
preds <- left_join(preds, actuals,
  by = c("target_date" = "time_value", "geo_value")
) %>%
  mutate(wis = weighted_interval_score(.pred_distn, actual))
preds
#> # A tibble: 56 × 7
#>    geo_value .pred .pred_distn forecast_date target_date actual    wis
#>    <chr>     <dbl>  <qtls(23)> <date>        <date>       <dbl>  <dbl>
#>  1 ak        0.217     [0.217] 2021-12-01    2021-12-08  0.0988 0.0673
#>  2 al        0.119     [0.119] 2021-12-01    2021-12-08  0.174  0.0364
#>  3 ar        0.207     [0.207] 2021-12-01    2021-12-08  0.514  0.196 
#>  4 as        0             [0] 2021-12-01    2021-12-08  0      0.0145
#>  5 az        0.485     [0.485] 2021-12-01    2021-12-08  0.826  0.223 
#>  6 ca        0.169     [0.169] 2021-12-01    2021-12-08  0.185  0.0278
#>  7 co        0.509     [0.509] 2021-12-01    2021-12-08  0.534  0.0313
#>  8 ct        0.177     [0.177] 2021-12-01    2021-12-08  0.149  0.0301
#>  9 dc        0             [0] 2021-12-01    2021-12-08  0.0200 0.0166
#> 10 de        0.217     [0.217] 2021-12-01    2021-12-08  0.391  0.101 
#> # ℹ 46 more rows